Hi John,
How big an enlargement and still appear sharp eh? That can be quite (unnecessarily) complicated, but there is a relatively "simple" method of doing this. Here come some more symbols :-)

Diffraction limits the smallest separation Δ_{fc} of two points of light (produced by a circular aperture) at the film/chip plane that are just barely resolved to

$$
\Delta_{\mathrm{fc}}=\frac{1.22 \lambda \mathrm{~F}_{\mathrm{C}}}{\mathrm{D}}=1.22 \lambda \mathrm{~N}
$$

where λ is the wavelength of light and N is the usual f/number. Using an average wavelength of (yellow-green) light as $550 \times 10^{-6} \mathrm{~mm}$, yields

$$
\Delta_{\mathrm{fc}}(\mathrm{~mm})=\frac{\mathrm{N}}{1490}
$$

Depending on the value of N, this can be larger than the resolution of the film or chip. Insofar as enlargements are concerned, you need to use the LARGER of the two. For example, if a chip has a pixel size of 0.01 mm and you plan to use $\mathrm{f} / 22$, then $\Delta_{\mathrm{fc}}=22 / 1490=0.015 \mathrm{~mm}$. In this case the larger of the two is due to diffraction, and therefore Δ_{fc} should be set to 0.015 mm . On the other hand, if you were using f/11, then $\Delta_{\mathrm{fc}}=11 / 1490=0.007 \mathrm{~mm}$. The larger of the two this time is the pixel size and so, here, Δ_{fc} should be set to 0.01 mm . Naturally these equations are based on "ideal" optics.

After an enlargement by a factor E , the smallest resolvable detail are now separated by a distance $E \Delta_{\mathrm{fc}}$ and this needs to be smaller than the human eye can see at your chosen viewing distance D_{v}.

The angular resolution of a "sharp" human eye is about $1 / 2000$ of a radian. At a viewing distance D_{v} this corresponds to seeing points only $D_{v} / 2000 \mathrm{~mm}$ apart. Therefore, in order for an enlarged image to appear sharp,

$$
\mathrm{E} \Delta_{\mathrm{fc}} \leq \frac{\mathrm{D}_{\mathrm{V}}}{2000}
$$

In other words, the enlargement needs to satisfy the condition

$$
\mathrm{E} \leq \frac{\mathrm{D}_{\mathrm{V}}}{2000 \Delta_{\mathrm{fc}}}
$$

If you were employing $\mathrm{f} / 22$, and Δ_{fc} is 0.015 mm and if your intended viewing distance is 400 mm , then the maximum enlargement is $\mathrm{E}=13 \mathrm{X}$.

If you selected f/numbers which ensured that Δ_{fc} is always the pixel size (0.01 mm), then your maximum possible enlargement is

$$
E_{\max }=\frac{D_{v}}{20}
$$

For a viewing distance of 400 mm , this corresponds to $E_{\text {max }}=20 X$.
Hope this helps :-)
Cheers,
Frank

